Efficient Data Clustering Using Coresets
2020-09-08 10:01

一、题目:  Efficient Data Clustering Using Coresets

二、主讲人:   Prof. Shaofeng Jiang


k-Clustering (e.g. k-median/keans) is a basic task for data analysis and machine learning.  However, classic clustering algorithms do not scale well on huge data sets. To this end, coresets were introduced as a powerful data reduction technique that turns a huge dataset into a tiny proxy. Moreover, coresets have been successfully applied to clustering in various settings including streaming and distributed computing.

      Coresets for k-clustering in Euclidean spaces have been very well studied. However, very few results are known when the space is beyond Euclidean or the objective is more general than k-clustering. In this talk, I will review the classic results in Euclidean spaces, and introduce a series of my recent works on coresets, including coresets for k-clustering in doubling spaces, in planar graphs, and generalized coresets for flexible and fair clustering.


      Prof.Shaofeng Jiang is currently an assistant professor in Aalto University. Before joining Aalto, he has been a postdoctoral researcher in the Weizmann Institute of Science hosted by Robert Krauthgamer during 2017 - 2020. He obtained his Ph.D. degree from the University of Hong Kong at 2017. His research interest is generally theoretical computer science, and especially algorithms for massive data sets, approximation algorithms and online algorithms. He is a recipient of an MSRA Fellowship Nomination Award, and an Outstanding Achievements in Postdoctoral Research Prize at the Weizmann Institute of Science.


                              孙宇清 教授




              腾讯会议 会议ID166 850 849





联系我们: vr@sdu.edu.cn tel:(0531)88391099 山东大学软件学院人机交互与虚拟现实实验室 版权所有