3D Modeling
Solid Modeling

Shandong University
Spring 2013
3D Object Representations

- **Raw data**
 - Point cloud
 - Range image
 - Polygon soup

- **Surfaces**
 - Mesh
 - Subdivision
 - Parametric
 - Implicit

- **Solids**
 - Voxels
 - BSP tree
 - CSG
 - Sweep

- **High-level structures**
 - Scene graph
 - Skeleton
 - Application specific
Solid Modeling

• Represent solid interiors of objects
Motivation 1

• Some acquisition methods generate solids

Airflow Inside a Thunderstorm
(Bob Wilhelmson,
University of Illinois at Urbana-Champaign)

Visible Human
(National Library of Medicine)
Motivation 2

- Some applications require solids
 - Examples: CAD/CAM

Intergraph Corporation
Motivation 3

- Some operations are easier with solids
 - Example: union, difference, intersection
3D Object Representations

- **Raw data**
 - Point cloud
 - Range image
 - Polygon soup

- **Surfaces**
 - Mesh
 - Subdivision
 - Parametric
 - Implicit

- **Solids**
 - Voxels
 - BSP tree
 - CSG
 - Sweep

- **High-level structures**
 - Scene graph
 - Skeleton
 - Application specific
Voxels

- Regular array of 3D samples (like image)
 - Samples are called voxels ("volume pixels")
Voxels

• Store properties of solid object with each voxel
 – Occupancy
 – Color
 – Density
 – Temperature
 – etc.

Engine Block
Stanford University

Visible Human
(National Library of Medicine)
Voxel Processing

• Signal processing (just like images)
 – Reconstruction
 – Resampling
• Typical operations
 – Blur
 – Edge detect
 – Warp
 – etc.
• Often fully analogous to image processing
Voxel Boolean Operations

- Compare objects voxel by voxel
 - Trivial
Binary Voxel Visualization

- Draw the faces between on and off voxels.
Continuous Voxel Visualization

- Slicing
- Ray-Casting
- Iso-Surface Extraction
Voxel Display

- Slicing
 - Draw 2D image resulting from intersecting voxels with a plane
Voxel Display

• Ray casting
 – Integrate density along rays through pixels
Voxel Display

• Extended ray-casting
 – Complex transfer functions
 – Map voxel densities to materials
Voxel Display

- Iso-Surface Extraction
 - Treat the voxel grid as a regular sampling of some function $F(x,y,z)$, and extract the iso-surface satisfying $F(x,y,z) = \delta$.

 $F(x,y,z) = \delta_1$

 $F(x,y,z) = \delta_2$
Voxel Display

- **Isosurface rendering**
 - Interpolate samples stored on regular grid
 - Isosurface at $f(x,y,z) = 0$ defines surface
Voxels

• Advantages
 – Simple, intuitive, unambiguous
 – Same complexity for all objects
 – Natural acquisition for some applications
 – Trivial boolean operations

• Disadvantages
 – Approximate
 – Not affine invariant
 – Expensive display
 – Large storage requirements
3D Object Representations

- **Raw data**
 - Point cloud
 - Range image
 - Polygon soup

- **Surfaces**
 - Mesh
 - Subdivision
 - Parametric
 - Implicit

- **Solids**
 - Voxels
 - **BSP tree**
 - CSG
 - Sweep

- **High-level structures**
 - Scene graph
 - Skeleton
 - Application specific
BSP Trees

- Binary space partitioning tree
- A method for recursively subdividing a space into convex sets by hyperplanes.
3D Object Representations

- **Raw data**
 - Point cloud
 - Range image
 - Polygon soup

- **Surfaces**
 - Mesh
 - Subdivision
 - Parametric
 - Implicit

- **Solids**
 - Voxels
 - BSP tree
 - CSG
 - Sweep

- **High-level structures**
 - Scene graph
 - Skeleton
 - Application specific
Constructive Solid Geometry (CSG)

- Represent solid object as hierarchy of boolean operations
 - Union
 - Intersection
 - Difference
CSG Acquisition

• Interactive modeling programs
 – Intuitive way to design objects
CSG Acquisition

- Interactive modeling programs
 - Intuitive way to design objects
• Ray casting
3D Object Representations

- **Raw data**
 - Point cloud
 - Range image
 - Polygon soup

- **Surfaces**
 - Mesh
 - Subdivision
 - Parametric
 - Implicit

- **Solids**
 - Voxels
 - BSP tree
 - CSG
 - **Sweep**

- **High-level structures**
 - Scene graph
 - Skeleton
 - Application specific
Sweeps

- Swept volume
 - Sweep one curve along path of another curve
Sweeps

- Surface of revolution
 - Take a curve and rotate it about an axis
Sweeps

• Surface of revolution
 – Take a curve and rotate it about an axis